https://www.justgiving.com/team/star-wars-the-clone-wars-season-7-episode-11
https://www.justgiving.com/team/star-wars-the-clone-wars-season-7-episode-12
https://www.justgiving.com/team/watch-star-wars-the-clone-wars-season-7-episode-12
https://www.justgiving.com/team/the-last-kingdom-season-4-episode-1
https://www.justgiving.com/team/Gangs-of-London-Season-1-Season-1
https://www.justgiving.com/team/ludo-2020-full-movie-online-free-for-123movies
https://www.justgiving.com/team/the-house-of-flowers-season-3-episode-1-online
A. Fungsi Permintaan
Fungsi Permintaan adalah persamaan yang menunjukkan hubungan antara jumlah suatu barang yang diminta dengan faktor-faktor yang mempengaruhinya. fungsi permintaan adalah suatu kajian matematis yang digunakan untuk menganalisa perilaku konsumen dan harga. fungsi permintaan mengikuti hukum permintaan yaitu apabila harga suatu barang naik maka permintaan akan barang tersebut juga menurun dan sebaliknya apabila harga barang turun maka permintaan akan barang tersebut meningkat. jadi hubungan antara harga dan jumlah barang yang diminta memiliki hubungan yang terbalik, sehingga gradien dari fungsi permintaan (b) akan selalu negatif.
Bentuk umum fungsi permintaan dengan dua variabel adalah sebagai beriut :
Qd = a - bPd atau Pd = -1/b ( -a + Qd)
dimana :
a dan b = adalah konstanta, dimana b harus bernilai negatif
b = ∆Qd / ∆Pd
Pd = adalah harga barang per unit yang diminta
Qd = adalah banyaknya unit barang yang diminta
Syarat, P ≥ 0, Q ≥ 0, serta dPd / dQ < 0
untuk lebih memahami tentang fungsi permintaan, dibawah ini disajikan soal dan pembahasan tentang fungsi permintaan.
- Pada saat harga Jeruk Rp. 5.000 perKg permintaan akan jeruk tersebut sebanyak 1000Kg, tetapi pada saat harga jeruk meningkat menjadi Rp. 7.000 Per Kg permintaan akan jeruk menurun menjadi 600Kg, buatlah fungsi permntaannya ?
Dari soal diatas diperoleh data :
P1 = Rp. 5.000 Q1 = 1000 Kg
P2 = Rp. 7.000 Q2 = 600 Kg
untuk menentukan fungsi permintaannya maka digunakan rumus persamaan garis melalui dua titik, yakni :
y - y1 x - x1
------ = --------
y2 - y1 x2 - x1
dengan mengganti x = Q dan y = P maka didapat,
P - P1 Q - Q1
------- = --------
P2 - P1 Q2 - Q1
mari kita masukan data diatas kedalam rumus :
P - 5.000 Q - 1000
----------------------- = ----------------
7.000 - 5.000 600 - 1000
P - 5.000 Q - 1000
----------------------- = ----------------
2.000 -400
P - 5.000 (-400) = 2.000 (Q - 1000)
-400P + 2.000.000 = 2000Q - 2.000.000
2000Q = 2000.000 + 2.000.000 - 400P
Q = 1/2000 (4.000.000 - 400P)
Q = 2000 - 0,2P
============
Jadi Dari kasus diatas diperoleh fungsi permintan Qd = 2000 - 0,2P
B. Fungsi Penawaran
Fungsi penawaran adalah persamaan yang menunjukkan hubungan harga barang di pasar dengan jumlah barang yang ditawarkan oleh produsen. Fungsi penawaran digunakan oleh produsen untuk menganalisa kemungkinan2 banyak barang yang akan diproduksi. Menurut hukum penawaran bila harga barang naik, dengan asumsi cateris paribus (faktor-faktor lain dianggap tetap), maka jumlah barang yang ditawarkan akan naik, dan sebaliknya apabila harga barang menurun jumlah barang yang ditawarkan juga menurun. jadi dalam fungsi penawaran antara harga barang dan jumlah barang yang ditawarkan memiliki hubungan posifit, karenanya gradien (b) dari fungsi penawaran selalu positif.
Bentuk umum dari fungsi penawaran linear adalah sebagai berikut:
Qs = a + bPs
dimana :
a dan b = adalah konstanta, dimana b harus bernilai positif
b = ∆Qs/ ∆Ps
Ps= adalah harga barang per unit yang ditawarkan
Qs= adalah banyaknya unit barang yang ditawarkan
Ps≥ 0, Qs≥ 0, serta dPs/ dQs > 0
Pada saat harga durian Rp. 3.000 perbuah toko A hanya mampu menjual Durian sebanyak 100 buah, dan pada saat harga durian Rp. 4.000 perbuah toko A mampu menjual Durian lebih banyak menjadi 200 buah. dari kasus tersebut buatlah fungsi penawarannya ?
Jawab :
dari soal diatas diperoleh data sebagai berikut :
P1 = 3.000 Q1 = 100 buah
P2 = 4.000 Q2 = 200 buah
Langkah selanjutnya, kita memasukan data-data diatas kedalam rumus persamaan linear a:
P - P1 Q - Q1
-------- = ---------
P2 - P1 Q2 - Q1
P - 3.000 Q - 100
-------------- = -------------
4.000 - 3.000 200 - 100
P - 3.000 Q - 100
-------------- = -------------
1.000 100(P - 3.000)(100) = (Q - 100) (1.000)
100P - 300.000 = 1.000Q - 100.000
1.000Q = -300.000 + 100.000 + 100P
1.000Q = -200.000 + 100P
Q = 1/1000 (-200.000 + 100P )
Q = -200 + 0.1P
============
Jadi dari kasus diatas diperoleh Fungsi penawaran : Qs = -200 + 0,1Pd
C. Keseimbangan Harga
Keseimbangan harga di pasar tercapai apabila Qd = Qs atau Pd = Ps, Jadi keseimbangan harga merupakan kesepakatan-kesepakatan antara produsen dan konsumen dipasar.
untuk lebih jelasnya perhatikan contoh soal dibawah ini :
- Tentukan jumlah barang dan harga pada keseimbangan pasar untuk fungsi permintaan Qd = 10 - 0,6Pd dan fungsi penawaran Qs = -20 + 0,4Ps.
Keseimbangan terjadi apabila Qd = Qs, Jadi
10 - 0,6Pd = -20 + 0,4Ps
0,4P + 0,6P = 10 + 20
P = 30
Setelah diketahui nilai P, kita masukan nilai tersebut kedalam salah satu fungsi tersebut:
Q = 10 - 0,2(30)
Q = 10 - 6
Q = 4,
Jadi keseimbangan pasar terjadi pada saat harga (P)=30 dan jumlah barang (Q) = 4.
D. Pengaruh Pajak terhadap Keseimbangan Pasar
Pengenaan pajak atau pemberian subsidi atas suatu barang yang diproduksi/dijual akan mempengaruhi keseimbangan pasar barang tersebut, mempengaruhi harga keseimbangan dan jumlah keseimbangan.
Pajak yang dikenakan atas penjualan suatu barang menyebabkan harga jual barang tersebut naik. Setelah dikenakan pajak, maka produsen akan mengalihkan sebagian beban pajak tersebut kepada konsumen, yaitu dengan menawarkan harga jual yang lebih tinggi. Akibatnya harga keseimbangan yang tercipta di pasar menjadi lebih tinggi daripada harga keseimbangan sebelum pajak, sedangkan jumlah keseimbangan menjadi lebih sedikit.
Pengenaan pajak sebesar t atas setiap unit barang yang dijual menyebabkan kurva penawaran bergeser ke atas, dengan penggal yang lebih besar (lebih tinggi) pada sumbu harga. Jika sebelum pajak persamaan penawarannya P = a + bQ, maka sesudah pajak ia akan menjadi P = a + bQ + t. Dengan kurva penawaran yang lebih tinggi (cateris paribus), titik keseimbangan akan bergeser menjadi lebih tinggi.
Contoh:
- Fungsi permintaan akan suatu barang ditunjukkan oleh persamaan P = 15 – Q, sedangkan penawaranannya P = 3 + 0.5 Q. Terhadap barang tersebut dikenakan pajak sebesar 3 perunit. Berapa harga keseimbangan dan jumlah keseimbangan sebelum pajak dan berapa pula jumlah keseimbangan sesudah pajak ?
Sebelum pajak Pe = 7 dan Qe = 8 (contoh di atas). Sesudah pajak, harga jual yang ditawarkan oleh produsen menjadi lebih tinggi. Persamaan penawaran berubah dan kurva bergeser ke atas.
Penawaran sebelum pajak : P = 3 + 0.5 Q
Penawaran sesudah pajak : P = 3 + 0.5 Q + 3
P = 6 + 0.5 Q Q = -12 + 2 P
Sedangkan persamaan permintaan tetap :
Q = 15 – P
Keseimbangan pasar : Qd = Qs
15 – P = -12 + 2P
27 = 3P
P = 9
Q = 15 – P
Q = 15 – 9
Q = 6
Jadi, sesudah pajak : Pe’ = 9 dan Qe’ = 6
E. Pengaruh Subsidi terhadap Keseimbangan Pasar
Subsidi merupakan kebalikan atau lawan dari pajak, dan sering disebut pajak negatif. Pengaruh terhadap pajakjuga berkebalikan dengan keseimbangan akibat pajak. Subsidi juga dapat bersifat spesifik dan juga proposional.
Pengaruh Subsidi. Subsidi yang diberikan atas produksi/penjualan barang menyebabkan harga jual barang tersebut menjadi lebih rendah. Dampaknya harga keseimbangan yang tercipta di pasar lebih rendah daripada harga keseimbangan sebelum atau tanpa subsidi,dan jumlah keseimbangannya menjadi lebih banyak.
Dengan subsidi spesifik sebesar s kurva penawaran bergeser sejajar ke bawah, dengan penggal yang lebih rendah( lebih kecil ) pada sumbu harga. Jika sebelum subsidi persamaan penawaran P = a + bQ, maka sesudah subsidi akan menjadi P’ = a + b Q – s = ( a – s ) + b Q. Karena kurva penawaran lebih rendah, cateris paribus, maka titik keseimbangan akan menjadi lebih rendah.
Contoh:
- Fungsi permintaan suatu barang ditunjukkan oleh persamaan P = 15 – Q, sedangkan penawaraannya P = 3 + 0.5 Q. Pemerintah memberikan subsidi sebesar 1.5 terhadap barang yang diproduksi. Berapa harga keseimbangan dan jumlahnya tanpa dan dengan subsidi.
Tanpa subsidi, Pe = 7 dan Qe = 8 (pada contoh kasus di atas
Dengan subsidi , harga jual yang ditawarkan oleh produsen menjadi lebih rendah, persamaan penawaran berubah dan kurvanya turun.
Penawaran tanpa subsidi : P = 3 + 0.5 Q
Penawaran dengan subsidi : P = 3 + 0.5 Q – 1.5
P = 1.5 + 0.5 Q Q = -3 + 2 P
Keseimbangan pasar setelah ada subsidi:
Qd = Qs
15 – P = -3 + 2P
18 = 3 P
P = 6
Q = 15 – P
Q = 15 – 6 = 9
Jadi, dengan adanya subsidi : Pe’ = 6 dan Qe’ = 9
No comments:
Post a Comment